Climate change and tree-line ecosystems in the Sierra Nevada: Habitat suitability modelling to inform high-elevation forest dynamics monitoring

Natural Resource Report NPS/SIEN/NRR—2017/1476
By: , and 

Links

Abstract

Whitebark pine and foxtail pine serve foundational roles in the subalpine zone of the Sierra Nevada. They provide the dominant structure in tree-line forests and regulate key ecosystem processes and community dynamics. Climate change models suggest that there will be changes in temperature regimes and in the timing and magnitude of precipitation within the current distribution of these species, and these changes may alter the species’ distributional limits. Other stressors include the non-native pathogen white pine blister rust and mountain pine beetle, which have played a role in the decline of whitebark pine throughout much of its range. The National Park Service is monitoring status and trends of these species. This report provides complementary information in the form of habitat suitability models to predict climate change impacts on the future distribution of these species within Sierra Nevada national parks.

We used maximum entropy modeling to build habitat suitability models by relating species occurrence to environmental variables. Species occurrence was available from 328 locations for whitebark pine and 244 for foxtail pine across the species’ distributions within the parks. We constructed current climate surfaces for modeling by interpolating data from weather stations. Climate surfaces included mean, minimum, and maximum temperature and total precipitation for January, April, July, and October. We downscaled five general circulation models for the 2050s and the 2090s from ~125 km2 to 1 km2 under both an optimistic and an extreme climate scenario to bracket potential climatic change and its influence on projected suitable habitat. 

To describe anticipated changes in the distribution of suitable habitat, we compared, for each species, climate scenario, and time period, the current models with future models in terms of proportional change in habitat size, elevation distribution, model center points, and where habitat is predicted to expand or contract.
Overall, models indicated that suitable habitats for whitebark and foxtail pine are more likely to shift geographically within the parks by 2100 rather than decline precipitously. This implies park managers might focus conservation efforts on stressors other than climate change, working toward species resilience in the face of threats from introduced disease and elevated native insect damage. More specifically, further understanding of the incidence and severity of white pine blister rust and other stressors in high elevation white pines would help assess vulnerability from threats other than climate change.

Study Area

Publication type Report
Publication Subtype Federal Government Series
Title Climate change and tree-line ecosystems in the Sierra Nevada: Habitat suitability modelling to inform high-elevation forest dynamics monitoring
Series title Natural Resource Report
Series number NPS/SIEN/NRR—2017/1476
Year Published 2017
Language English
Publisher National Park Service
Contributing office(s) Western Ecological Research Center
Description ix, 74 p.
Country United States
State California
Other Geospatial Sierra Nevada
Google Analytic Metrics Metrics page
Additional publication details