Shelf evolution along a transpressive transform margin, Santa Barbara Channel, California

Geosphere
By: , and 

Links

Abstract

High-resolution bathymetric and seismic reflection data provide new insights for understanding the post–Last Glacial Maximum (LGM, ca. 21 ka) evolution of the ∼120-km-long Santa Barbara shelf, located within a transpressive segment of the transform continental margin of western North America. The goal is to determine how rising sea level, sediment supply, and tectonics combine to control shelf geomorphology and history. Morpho­logic, stratigraphic, and structural data highlight regional variability and support division of the shelf into three domains. (1) The eastern Santa Barbara shelf is south of and in the hanging wall of the blind south-dipping Oak Ridge fault. The broad gently dipping shelf has a convex-upward shape resulting from thick post-LGM sediment (mean = 24.7 m) derived from the Santa Clara River. (2) The ∼5–8-km-wide Ventura Basin obliquely crosses the shelf and forms an asymmetric trough with thick post-LGM sediment fill (mean = 30.4 m) derived from the Santa Clara and Ventura Rivers. The basin is between and in the footwalls of the Oak Ridge fault to the south and the blind north-dipping Pitas Point fault to the north. (3) The central and western Santa Barbara shelf is located north of and in the hanging wall of the North Channel–Pitas Point fault system. The concave-up shape of the shelf results from folding, marine erosion, and the relative lack of post-LGM sediment cover (mean = 3.8 m). Sediment is derived from small steep coastal watersheds and largely stored in the Gaviota bar and other nearshore mouth bars. Three distinct upper slope morphologies result from a mix of progradation and submarine landsliding.

Ages and rates of deformation are derived from a local sea-level-rise model that incorporates an inferred LGM shoreline angle and the LGM wave-cut platform. Post-LGM slip rates on the offshore Oak Ridge fault are a mini­mum of 0.7 ± 0.1 mm/yr. Slip rates on the Pitas Point fault system are a minimum of 2.3 ± 0.3 mm/yr near Pitas Point, and decrease to the west across the Santa Barbara Channel. Documentation of fault lengths, slip rates, and rupture modes, as well as potential zones of submarine landsliding, provide essential information for enhanced regional earthquake and tsunami hazard assessment.

Study Area

Publication type Article
Publication Subtype Journal Article
Title Shelf evolution along a transpressive transform margin, Santa Barbara Channel, California
Series title Geosphere
DOI 10.1130/GES01387.1
Volume 13
Issue 6
Year Published 2017
Language English
Publisher Geological Society of America
Contributing office(s) Pacific Coastal and Marine Science Center
Description 37 p.
First page 2041
Last page 2077
Country United States
State California
Other Geospatial Santa Barbara Channel
Google Analytic Metrics Metrics page
Additional publication details