Phosphorus (P) is essential for life. It is the backbone of our DNA, provides energy for biological reactions, and is an integral component of cell membranes. As such, it is no surprise that P availability plays a strong role in regulating ecosystem structure and function (Wassen et al. 2005, Elser et al. 2007, Condit et al. 2013), and in determining our capacity to grow food for a burgeoning human population (Sharpley et al. 1997, Sims and Sharpley 2005, Lal 2009). Concerns that P supplies are insufficient to meet our species’ growing demands are on the rise (Richardson and Simpson 2011) and scientific and media outlets increasingly discuss P as an element worthy of our attention and concern (e.g., Cordell et al. 2009, Lougheed 2011, Edixhoven et al. 2013, Ulrich et al. 2013). Indeed, a number of groups are calling for the explicit stewardship of our planet’s P stocks (Schipper 2014, Withers et al. 2015). Yet a focus on P as a vital and limited resource is not new in the tropics, where an abundance of soils characterized by low P has resulted in a substantial, longstanding reliance on P inputs for tropical ecosystem function in both unmanaged and agriculture settings (Table 1, Figure 2; Sanchez 1976, Swap et al. 1992, Chadwick et al. 1999, Okin et al. 2004, Lal 2009). Indeed, there is a long history of cultivation in the tropics, where for thousands of years land management practices have included methods that effectively modify P availability for plant growth (e.g., Giardina et al. 2000, Lawrence and Schlesinger 2001, Vitousek et al. 2004, Lewis et al. 2015). Nevertheless, low soil fertility in tropical systems where fertilizer is scarce has enduringly been recognized as a major source of hunger and starvation (Sanchez and Buol 1975, Sanchez 2002, Sanchez and Swaminathan 2005).