Cryptic nest sites and secretive breeding behavior make population estimates and monitoring of Marbled Murrelets Brachyramphus marmoratus difficult and expensive. Standard audio-visual and radar protocols have been refined but require intensive field time by trained personnel. We examined the detection range of automated sound recorders (Song Meters; Wildlife Acoustics Inc.) and the reliability of automated recognition models (“recognizers”) for identifying and quantifying Marbled Murrelet vocalizations during the 2011 and 2012 breeding seasons at Kodiak Island, Alaska. The detection range of murrelet calls by Song Meters was estimated to be 60 m. Recognizers detected 20 632 murrelet calls (keer and keheer) from a sample of 268 h of recordings, yielding 5 870 call series, which compared favorably with human scanning of spectrograms (on average detecting 95% of the number of call series identified by a human observer, but not necessarily the same call series). The false-negative rate (percentage of murrelet call series that the recognizers failed to detect) was 32%, mainly involving weak calls and short call series. False-positives (other sounds included by recognizers as murrelet calls) were primarily due to complex songs of other bird species, wind and rain. False-positives were lower in forest nesting habitat (48%) and highest in shrubby vegetation where calls of other birds were common (97%–99%). Acoustic recorders tracked spatial and seasonal trends in vocal activity, with higher call detections in high-quality forested habitat and during late July/early August. Automated acoustic monitoring of Marbled Murrelet calls could provide cost-effective, valuable information for assessing habitat use and temporal and spatial trends in nesting activity; reliability is dependent on careful placement of sensors to minimize false-positives and on prudent application of digital recognizers with visual checking of spectrograms.