Modelling passive margin sequence stratigraphy

By: , and 

Links

Abstract

We have modelled stratigraphic sequences to aid in deciphering the sedimentary response to sea-level change. Sequence geometry is found to be most sensitive to sea level, but other factors, including subsidence rate and sediment supply, can produce similar changes. Sediment loading and compaction also play a major role in generating accommodation, a factor often neglected in sequence-stratigraphic models. All of these parameters can control whether a type 1 or type 2 sequence boundary is produced. The models indicate that variations in margin characteristics produce systematic shifts in sequence boundary timing and systems tract distribution. The timing of the sequence boundary formation and systems tracts may differ by up to one-half of a sea-level cycle. Thus correlative sequence boundaries will not be synchronous. While rates of sea-level change may exceed the rate of thermal subsidence, isostasy and compaction may amplify the rate of total subsidence to several times greater than the thermal subsidence. Thus, total subsidence does not vary uniformly across the margin since it is modified by the sediment load. The amplitude of sea-level changes cannot be determined accurately without accounting for the major processes that affect sediment accumulation. Backstripping of a seismic line on the New Jersey margin is used to reconstruct continental margin geometry. The reconstructions show that the pre-existing ramp-margin geometry, rather than sea level, controls clinoform heights and slopes and sedimentary bypass. Backstripping also reveals progressive deformation of sequences due to compaction. Further work is still needed to understand quantitatively the role of sea level and the tectonic and sedimentary processes controlling sequence formation and influencing sequence architecture.

Publication type Book chapter
Publication Subtype Book Chapter
Title Modelling passive margin sequence stratigraphy
DOI 10.1002/9781444304015.ch2
Volume 18
Year Published 1993
Language English
Publisher Wiley
Contributing office(s) Woods Hole Coastal and Marine Science Center
Description 23 p.
Larger Work Type Book
Larger Work Title Sequence Stratigraphy and Facies Associations
First page 19
Last page 41
Country United States
Google Analytic Metrics Metrics page
Additional publication details