Numerical simulation of steady state three-dimensional groundwater flow near lakes
Links
- More information: Publisher Index Page (via DOI)
- Download citation as: RIS | Dublin Core
Abstract
Numerical simulation of three-dimensional groundwater flow near lakes shows that the continuity of the boundary encompassing the local groundwater flow system associated with a lake is the key to understanding the interaction of a lake with the groundwater system. The continuity of the boundary can be determined by the presence of a stagnation zone coinciding with the side of the lake nearest the downgradient side of the groundwater system. For most settings modeled in this study the stagnation zone underlies the lakeshore, and it generally follows its curvature. The length of the stagnation zone is controlled by the geometry of the lake's drainage basin divide on the side of the lake nearest the downgradient side of the groundwater system. In the case of lakes that lose water to the groundwater system, three-dimensional modeling also allows for estimating the area of lake bed through which outseepage takes place. Analysis of the effects of size and lateral and vertical distribution of aquifers within the groundwater system on the outseepage from lakes shows that the position of the center point of the aquifer relative to the littoral zone on the side of the lake nearest the downgradient side of the groundwater system is a critical factor. If the center point is downslope from this part of the littoral zone, the local flow system boundary tends to be weak or outseepage occurs. If the center point is upslope from this littoral zone, the stagnation zone tends to be stronger (to have a higher head in relation to lake level), and outseepage is unlikely to occur.
Publication type | Article |
---|---|
Publication Subtype | Journal Article |
Title | Numerical simulation of steady state three-dimensional groundwater flow near lakes |
Series title | Water Resources Research |
DOI | 10.1029/WR014i002p00245 |
Volume | 14 |
Issue | 2 |
Year Published | 1978 |
Language | English |
Publisher | AGU |
Contributing office(s) | North Dakota Water Science Center, Dakota Water Science Center |
Description | 10 p. |
First page | 245 |
Last page | 254 |
Google Analytic Metrics | Metrics page |