Fire and climate suitability for woody vegetation communities in the south central United States

Fire Ecology
By: , and 

Links

Abstract

Climate and fire are primary drivers of plant species distributions. Long-term management of south central United States woody vegetation communities can benefit from information on potential changes in climate and fire frequencies, and how these changes might affect plant communities. We used historical (1900 to 1929) and future (2040 to 2069 and 2070 to 2099) projected climate data for the conterminous US to estimate reference and future fire probabilities using a physical chemistry fire frequency model. We then used the fire probability data with additional climate parameters to construct maximum entropy environmental suitability models for three south central US vegetation communities. The modeled communities included an oak type (dominated by post oak, Quercus stellata Wangenh., and blackjack oak, Q. marilandica Münchh.), a mesquite type (dominated by honey mesquite, Prosopis glandulosa Torr., and velvet mesquite, P. velutina Wooton), and a pinyon−juniper type (dominated by pinyon pine, Pinus edulis Engelm., and Utah juniper, Juniperus osteosperma [Torr.] Little). We mapped baseline and future mean fire-climate suitability using data from three global climate models for 2040 to 2069 and 2070 to 2099; we also mapped future locations of threshold conditions for which all three models agreed on suitability for each community. Future projections included northward, southward, and eastward shifts in suitable conditions for the oaks along a broad path of fire-climate stability; an overall reduction in suitable area for historic mesquite communities coupled with potential expansion to new areas; and constriction and isolation of suitable conditions for pinyon−juniper communities. The inclusion of fire probability adds an important driver of vegetation distribution to climate envelope modeling. The simple models showed good fit, but future projections failed to account for future management activities or land use changes. Results provided information on potential future de-coupling and spatial re-arrangement of environmental conditions under which these communities have historically persisted and been managed. In particular, consensus threshold maps can inform long-term planning for maintenance or restoration of these communities, and they can be used as a potential tool for other communities in fire-prone environments within the study area and beyond its borders.
Publication type Article
Publication Subtype Journal Article
Title Fire and climate suitability for woody vegetation communities in the south central United States
Series title Fire Ecology
DOI 10.4996/fireecology.140110612
Volume 14
Issue 1
Year Published 2018
Language English
Publisher Springer
Contributing office(s) Columbia Environmental Research Center
Description 19 p.
First page 106
Last page 124
Google Analytic Metrics Metrics page
Additional publication details