Tracing the cycling and fate of the munition, Hexahydro-1,3,5-trinitro-1,3,5-triazine in a simulated sandy coastal marine habitat with a stable isotopic tracer, 15N-[RDX]

Science of the Total Environment
By: , and 

Links

Abstract

Coastal marine habitats become contaminated with the munitions constituent, Hexahydro-1,3,5-trinitro-1,3,5-trazine (RDX), via military training, weapon testing and leakage of unexploded ordnance. This study used 15N labeled RDX in simulated aquarium-scale coastal marine habitat containing seawater, sediment, and biota to track removal pathways from surface water including sorption onto particulates, degradation to nitroso-triazines and mineralization to dissolved inorganic nitrogen (DIN). The two aquaria received continuous RDX inputs to maintain a steady state concentration (0.4 mg L−1) over 21 days. Time series RDX and nitroso-triazine concentrations in dissolved (surface and porewater) and sorbed phases (sediment and suspended particulates) were analyzed. Distributions of DIN species (ammonium, nitrate + nitrite and dissolved N2) in sediments and overlying water were also measured along with geochemical variables in the aquaria. Partitioning of RDX and RDX-derived breakdown products onto surface sediment represented 13% of the total added 15N as RDX (15N-[RDX]) equivalents after 21 days. Measured nitroso-triazines in the aquaria accounted for 6–13% of total added 15N-[RDX]. 15N-labeled DIN was found both in the oxic surface water and hypoxic porewaters, showing that RDX mineralization accounted for 34% of the 15N-[RDX] added to the aquaria over 21 days. Labeled ammonium (15NH4+, found in sediment and overlying water) and nitrate + nitrite (15NOX, found in overlying water only) together represented 10% of the total added 15N-[RDX]. The production of 15N labeled N2(15N2), accounted for the largest individual sink during the transformation of the total added 15N-[RDX] (25%). Hypoxic sediment was the most favorable zone for production of N2, most of which diffused through porous sediments into the water column and escaped to the atmosphere.

Publication type Article
Publication Subtype Journal Article
Title Tracing the cycling and fate of the munition, Hexahydro-1,3,5-trinitro-1,3,5-triazine in a simulated sandy coastal marine habitat with a stable isotopic tracer, 15N-[RDX]
Series title Science of the Total Environment
DOI 10.1016/j.scitotenv.2018.07.404
Volume 647
Year Published 2019
Language English
Publisher Elsevier
Contributing office(s) WMA - Earth System Processes Division
Description 10 p.
First page 369
Last page 378
Google Analytic Metrics Metrics page
Additional publication details