Links
- More information: Publisher Index Page
- Download citation as: RIS | Dublin Core
Abstract
We designed two new samplers for monitoring airborne particulates that rely on either natural wind currents (Passive Environmental Sampler) or a battery-operated fan (Active Environmental Sampler). Both samplers are significantly less expensive than commercial devices such as Rotorod® and Burkard Samplers that are used in the agricultural and health science industries. They are economical enough to be deployed in large numbers across broad landscapes. We evaluated their use for detecting airborne spread of ambrosia beetle frass that may contain infective spores of the fungi (Ceratocystis lukuohia and C. huliohia) that are responsible for Rapid `Ōhi`a Death (ROD), a newly documented pathosystem on Hawai`i Island. We compared performance of the new samplers to Rotorod® Model 20 Samplers by releasing synthetic polyethylene spheres (12–160 µm in diameter) and also Xyleborus spp. frass known to contain C. lukuohia and C. huliohia propagules under controlled laboratory and field conditions. Overall, the Active Environmental Sampler proved to be 3–4 times more effective in capturing polyethylene spheres and 2–3 times more effective in capturing frass than either the Passive or Rotorod® Samplers. Significant differences between the Passive and Rotorod® Samplers were not detected. For the frass release experiment, C. lukuohia DNA was detected once by qPCR in an Active Environmental Sampler and C. huliohia DNA was detected during two different trials, once with an Active Environmental Sampler and once with a Passive Environmental Sampler. No detections were made with Rotorod® Samplers. Both Active and Passive Samplers were used in the field for detection of airborne dispersal of C. lukuohia and C. huliohia at Orchidlands Estates in the Puna District of Hawai`i Island. We found that airborne dispersal of potentially infective beetle frass was uncommon over short distances with qPCR detections in up to 10% of weekly sampler collections.
Publication type | Report |
---|---|
Publication Subtype | Other Report |
Title | Economical environmental sampler designs for detecting airborn spread of fungi responsible for rapid `Ōhi` death |
Series title | Hawai`i Cooperative Studies Unit Technical Report |
Series number | HCSU-TR087 |
Year Published | 2019 |
Language | English |
Publisher | University of Hawaii at Hilo |
Contributing office(s) | Pacific Island Ecosystems Research Center |
Description | iv, 33 p. |
Google Analytic Metrics | Metrics page |