Remote sensing of river bathymetry: Evaluating a range of sensors, platforms, and algorithms on the upper Sacramento River, California, USA

Water Resources Research
By:  and 

Links

Abstract

Remote sensing has become an increasingly viable tool for characterizing fluvial systems. In this study, we used field measurements from a 1.6 km reach of the upper Sacramento River, CA, to evaluate the potential of mapping water depths from a range of platforms, sensors, and depth retrieval methods. Field measurements of water column optical properties also were compared to similar data sets from other rivers to provide context for our results. We considered field spectra, a multispectral satellite image, hyperspectral data collected from conventional and unmanned aircraft, and a bathymetric LiDAR and applied a generalized version of Optimal Band Ratio Analysis (OBRA) and the K nearest neighbors regression (KNN) machine learning algorithm. Linear, quadratic, exponential, power, and lowess OBRA models enabled more flexible curve-fitting in calibrating spectrally based quantities to depth; an exponential formulation avoided artifacts associated with other model types. KNN increased observed vs. predicted R2 values, particularly for the satellite image; we also found that pre-processing of satellite images was unnecessary and that a basic data product could be used for depth retrieval. Bathymetric LiDAR was highly accurate and precise in shallow water, but a lack of bottom returns from areas greater than 2 m deep resulted in large gaps in coverage. The maximum detectable depth imposes an important constraint on fluvial remote sensing and a hybrid approach combined with field surveys of deep areas might be a more realistic operational strategy for bathymetric mapping. Future work will focus on scaling up from short reaches to long river segments.

Study Area

Publication type Article
Publication Subtype Journal Article
Title Remote sensing of river bathymetry: Evaluating a range of sensors, platforms, and algorithms on the upper Sacramento River, California, USA
Series title Water Resources Research
DOI 10.1029/2018WR023586
Volume 55
Issue 3
Year Published 2018
Language English
Publisher American Geophysical Union
Contributing office(s) WMA - Integrated Modeling and Prediction Division
Description 18 p.
First page 2142
Last page 2169
Country United States
State California
Other Geospatial Sacramento River
Google Analytic Metrics Metrics page
Additional publication details