Temporary wetlands have value to both ecological and social systems. Interactions between local climate and the surrounding landscape result in patterns of hydrology that are unique to temporary wetlands. These seasonal and annual fluctuations in wetland inundation contribute to community composition and richness. Thus, predicting wetland community responses to environmental change is tied to the ability to predict wetland hydroregime. Detailed monitoring of wetland hydroregime is resource-intensive, limiting the scope and scale of forecasting. As an alternative, we determine which freely available measures of water availability best predict one component of wetland hydroregime, habitat suitability (i.e., the predictability of water in a wetland) within and among geographic regions. We used data from three North American regions to determine the climate index that best explained year-to-year variation in habitat suitability during a key phenological period—amphibian breeding. We demonstrate that simple, short-term climate indices based solely on precipitation data best predict habitat suitability in vernal pools in the northeast, montane wetlands in the west and coastal plain wetlands in the southeast. These relationships can help understand how changes in short-term precipitation patterns as a result of climate change may influence the overall hydroregime, and resulting biodiversity, of temporary wetlands across disparate biomes.