Boreal forest regions are a focal point for investigations of coupled water and biogeochemical fluxes in response to wildfire disturbances, climate warming, and permafrost thaw. Soil hydraulic, physical, and thermal property measurements for mineral soils in permafrost regions are limited, despite substantial influences on cryohydrogeologic model results. This work expands mineral soil property quantification in cold regions through soil characterization from the discontinuous permafrost zone of interior Alaska, USA. Values extend beyond the range of prior measurement magnitudes in analogous regions, highlighting the importance of this dataset. Rocky and silty upland soil landscape classifications and wildfire disturbance provided guiding frameworks for the sampling and analysis for potential implications for the hydrologic response to thawing permafrost. Bulk density, soil organic matter, soil–particle size distributions (sand, silt, and gravel fractions), and soil hydraulic properties of van Genuchten parameters alpha and N had moderate evidence of differences between silty and rocky classifications. Burned and unburned sites had only moderate evidence of differences for silt fraction. Field-saturated hydraulic conductivity (Kfs) was more variable at burned sites compared to unburned sites, which corresponded to observations of greater rooting depths at burned sites and observations of root paths in soil cores for Kfs measurement. Soil thermal properties suggested that gravel content may reduce the accuracy of commonly used estimation methods for thermal conductivity . This work provides soil parameter constraints necessary for hypothesis testing and site-specific prediction with cryohydrogeologic models to examine controls on active layer and permafrost dynamics in upland boreal forests.