Species distribution models (SDM) that rely on regional-scale environmental variables will play a key role in forecasting species occurrence in the face of climate change. However, in the Anthropocene, a number of local-scale anthropogenic variables, including wildfire history, land-use change, invasive species, and ecological restoration practices can override regional-scale variables to drive patterns of species distribution. Incorporating these human-induced factors into SDMs remains a major research challenge, in part because spatial variability in these factors occurs at fine scales, rendering prediction over regional extents problematic. Here, we used big sagebrush (Artemisia tridentata Nutt.) as a model species to explore whether including human-induced factors improves the fit of the SDM. We applied a Bayesian hurdle spatial approach using 21,753 data points of field-sampled vegetation obtained from the LANDFIRE program to model sagebrush occurrence and cover by incorporating fire history metrics and restoration treatments from 1980 to 2015 throughout the Great Basin of North America.