Mangrove forests in the Florida Everglades (USA) are frequently affected by hurricanes that produce high-velocity winds, storm surge, and extreme rainfall, but also provide sediment subsidies that help mangroves adjust to sea-level rise. The long-term influence of hurricane sediment inputs on soil elevation dynamics in mangrove forests are not well understood. Here, we assessed the effects of sediment deposition during Hurricanes Wilma (2005) and Irma (2017) on soil elevation change at two mangrove forests located along the Shark and Lostmans Rivers in Everglades National Park. We used surface elevation change data from a sixteen-year period (2002-2018), measured with the surface elevation table-marker horizon (SET-MH) approach. At the Shark River mangrove forest, we used marker horizons and a combination of deep, shallow, and original SETs to quantify the contributions of four soil zones to net soil elevation change. Rates of elevation change were greatly influenced by storm sediments. Abrupt increases in elevation due to sediment inputs and subsurface expansion during Hurricane Wilma were followed by: (1) an initial post-hurricane period of elevation loss due to erosion of hurricane sediments and subsurface contraction; (2) a secondary period of elevation gain due primarily to accretion; and (3) an abrupt elevation gain due to new sediment inputs during Hurricane Irma. Our findings suggest that elevation change in hurricane-affected mangrove forests can be cyclical or include disjunct phases, which is critical information for advancing the understanding of wetland responses to accelerated sea-level rise given the expectation of increasing storm intensity due to climate change.