How "simple" methodological decisions affect interpretation of population structure based on reduced representation library DNA sequencing: A case study using the lake whitefish

PLoS ONE
By: , and 

Links

Abstract

Reduced representation (RRL) sequencing approaches (e.g., RADSeq, genotyping by sequencing) require decisions about how much to invest in genome coverage and sequencing depth, as well as choices of values for adjustable bioinformatics parameters. To empirically explore the importance of these “simple” methodological decisions, we generated two independent sequencing libraries for the same 142 individual lake whitefish (Coregonus clupeaformis) using a nextRAD RRL approach: (1) a larger number of loci at low sequencing depth based on a 9mer (library A); and (2) fewer loci at higher sequencing depth based on a 10mer (library B). The fish were selected from populations with different levels of expected genetic subdivision. Each library was analyzed using the STACKS pipeline followed by three types of population structure assessment (FST, DAPC and ADMIXTURE) with iterative increases in the stringency of sequencing depth and missing data requirements, as well as more specific a priori population maps. Library B was always able to resolve strong population differentiation in all three types of assessment regardless of the selected parameters, largely due to retention of more loci in analyses. In contrast, library A produced more variable results; increasing the minimum sequencing depth threshold (-m) resulted in a reduced number of retained loci, and therefore lost resolution at high -m values for FST and ADMIXTURE, but not DAPC. When detecting fine population differentiation, the population map influenced the number of loci and missing data, which generated artefacts in all downstream analyses tested. Similarly, when examining fine scale population subdivision, library B was robust to changing parameters but library A lost resolution depending on the parameter set. We used library B to examine actual subdivision in our study populations. All three types of analysis found complete subdivision among populations in Lake Huron, ON and Dore Lake, SK, Canada using 10,640 SNP loci. Weak population subdivision was detected in Lake Huron with fish from sites in the north-west, Search Bay, North Point and Hammond Bay,showing slight differentiation. Overall, we show that apparently simple decisions about library construction and bioinformatics parameters can have important impacts on the interpretation of population subdivision. Although potentially more costly on a per-locus basis, early investment in striking a balance between the number of loci and sequencing effort is well worth the reduced genomic coverage for population genetics studies. More conservative stringency settings on STACKS parameters lead to a final dataset that was more consistent and robust when examining both weak and strong population differentiation. Overall, we recommend that researchers approach “simple” methodological decisions with caution, especially when working on non-model species for the first time.

Study Area

Publication type Article
Publication Subtype Journal Article
Title How "simple" methodological decisions affect interpretation of population structure based on reduced representation library DNA sequencing: A case study using the lake whitefish
Series title PLoS ONE
DOI 10.1371/journal.pone.0226608
Volume 15
Issue 1
Year Published 2020
Language English
Publisher PLoS
Contributing office(s) Great Lakes Science Center
Description e0226608, 35 p.
Country Canada, United States
State Michigan, Ontario, Saskatchewan
Other Geospatial Dore Lake, Lake Huron
Google Analytic Metrics Metrics page
Additional publication details