(Munson) The challenges of restoration in dryland ecosystems are growing due to a rise in anthropogenic disturbance and increasing aridity. Plant functional traits are often used to predict plant performance and can offer a window into the potential outcomes of restoration efforts across environmental gradients. We tracked 15 years of seeding outcomes across 150 sites on the Colorado Plateau, a cold desert ecoregion in the western United States, and analyzed the independent and interactive effects of functional traits (seed mass, height, and specific leaf area) and local biologically relevant climate variables on seeding success. We predicted that the best models would include an interaction between plant traits and climate, indicating a need to match the right trait value to the right climate conditions in order to maximize seeding success. Indeed, we found that both plant height and seed size significantly interacted with temperature seasonality, with larger seeds and taller plants performing better in more seasonal environments. We also determined that these trait-environment patterns are not driven by the use of native vs. non-native species. Our results lend insight to using plant traits to inform the selection of seed mixes for restoring areas with specific climatic conditions, while also demonstrating the strong influence of temperature seasonality on seeding success in the Colorado Plateau region.