Magnetic models of crystalline terrane; accounting for the effect of topography

Geophysics
By:  and 

Links

Abstract

Igneous rocks commonly have large magnetic susceptibilities so that high topographic relief in crystalline terrane can produce significant anomalies in aeromagnetic surveys. Topographic anomalies are particularly significant in relatively undeformed volcanic terrane because young volcanic rocks generally have large natural remanent magnetizations as well as large susceptibilities. These anomalies commonly appear in aeromagnetic surveys as a complex pattern of high-amplitude, short-wavelength magnetic features that tend to obscure anomalies caused by deeper geologic sources. We have facilitated geologic interpretation of an aeromagnetic survey of the Oregon Cascade Range by calculating the magnetic field caused by a three-dimensional (3-D) topographic model. Maps of the calculated field are compared with observed aeromagnetic data both visually and with a numerical technique that produces a contour map of correlation coefficients for the model. These comparisons allow quick recognition of anomalies caused by normally or reversely magnetized topographic features and, more importantly, identification of anomalies caused by geologic features not obviously caused by the topography.

Study Area

Publication type Article
Publication Subtype Journal Article
Title Magnetic models of crystalline terrane; accounting for the effect of topography
Series title Geophysics
DOI 10.1190/1.1441437
Volume 48
Issue 11
Year Published 1983
Language English
Publisher GeoScienceWorld
Contributing office(s) Crustal Geophysics and Geochemistry Science Center, Geology, Minerals, Energy, and Geophysics Science Center
Description 7 p.
First page 1551
Last page 1557
Country United States
State Oergon
Other Geospatial Oregon Cascade Range
Google Analytic Metrics Metrics page
Additional publication details