Weakness of the lower continental crust: A condition for delamination, uplift, and escape

Tectonophysics
By:  and 

Links

Abstract

We discuss three interconnected processes that occur during continental compression and extension: delamination of the lower crust and sub-crustal lithosphere, escape tectonics (i.e., lateral crustal flow), and crustal uplift. We combine calculations of lithospheric viscosity–depth curves with geologic observations and seismic images of the deep crust to infer the mechanisms controlling these processes. The basic driving force for delamination is the negative buoyancy (in some regions) of the continental lower crust and sub-crustal lithosphere with respect to the warm, mobile asthenosphere. A phase transformation in the lower crust from mafic granulite facies to eclogite may be important for providing negative buoyancy. Where negative buoyancy exists, the onset of delamination is mainly a question of the presence of a suitable decoupling zone between the denser lithosphere and the lighter upper and middle crust. We estimate the depth to potential decoupling zones by calculating lithospheric viscosity–depth curves based on reasonable geotherms and models of lithospheric composition. Low-viscosity zones occur at three depths: (1) at the base of the felsic (upper) crust; (2) within the lower crust; and (3) several tens of kilometers below the Moho. The commonly observed absence of a high-velocity (>6.8 km/s) lower crustal layer beneath extended crust may be explained by delamination wherein decoupling occurs at the top of the lower crust. In addition to being zones of potential decoupling, crustal low-viscosity zones are avenues for lateral crustal flow, a process that is often referred to as crustal escape (e.g., eastern Tibetan Plateau). The third process addressed here, crustal uplift, is mainly found in compressional environments and can be related to mature (i.e., complete or nearly complete) delamination and/or a thick low-viscosity lower crust. Mature delamination generates crustal uplift as the sinking, dense lithosphere is replaced by the mobilized hot asthenosphere. A very different mechanism of uplift is associated with some continental high plateaus, where a high convergence rate and the lateral intrusion of cold, rigid shield crust into warm, low-viscosity orogenic crust acts like a solid piston moving into hydraulic fluid. The displacement of the low-viscosity crustal `fluid' generates broad plateau uplifts. Modern examples are the intrusion of the Indian shield into the Tibetan Plateau and the Brazilian shield into the Andes. All of these processes, delamination, tectonic escape, and uplift are interconnected and are related to weakness in the lower crust during continental compression and extension.

Publication type Article
Publication Subtype Journal Article
Title Weakness of the lower continental crust: A condition for delamination, uplift, and escape
Series title Tectonophysics
DOI 10.1016/S0040-1951(98)00136-X
Volume 296
Issue 1-2
Year Published 1998
Language English
Publisher Elsevier
Contributing office(s) Earthquake Science Center
Description 14 p.
First page 47
Last page 60
Google Analytic Metrics Metrics page
Additional publication details