Modelling marsh-forest boundary transgression in response to storms and sea-level rise
Links
- More information: Publisher Index Page (via DOI)
- Data Release: USGS data release - Water levels (November 11 2016 through November 11 2017) for four wells and Light intensity data (October 1 2015 through September 2019): from marsh to upland forest, for Moneystump Marsh, Blackwater National Wildlife Refuge, Maryland
- Open Access Version: Publisher Index Page
- Download citation as: RIS | Dublin Core
Abstract
The lateral extent and vertical stability of salt marshes experiencing rising sea levels depend on interacting drivers and feedbacks with potential for non‐linear behaviors. A two‐dimensional transect model was developed to examine changes in marsh and upland forest lateral extent and to explore controls on marsh inland transgression. Model behavior demonstrates limited and abrupt forest retreat with long‐term upland boundary migration rates controlled by slope, sea level rise (SLR), high water events and biotic‐abiotic interactions. For low to moderate upland slopes the landward marsh edge is controlled by the interaction of these inundation events and forest recovery resulting in punctuated transgressive events. As SLR rates increase, the importance of the timing and frequency of water level deviations diminishes, and migration rates revert back to a slope‐SLR dominated process.
Publication type | Article |
---|---|
Publication Subtype | Journal Article |
Title | Modelling marsh-forest boundary transgression in response to storms and sea-level rise |
Series title | Geophysical Research Letters |
DOI | 10.1029/2020GL088998 |
Volume | 47 |
Issue | 17 |
Year Published | 2020 |
Language | English |
Publisher | American Geophysical Union |
Contributing office(s) | Patuxent Wildlife Research Center |
Description | e2020GL088998, 10 p. |
Google Analytic Metrics | Metrics page |