Links
- The Publications Warehouse does not have links to digital versions of this publication at this time
- Download citation as: RIS | Dublin Core
Abstract
Glide snow avalanches are dangerous and difficult to predict. Despite recent research there is still a lack of understanding regarding the controls of glide avalanche release. Glide avalanches often occur in similar terrain or the same locations annually and observations suggest that topography may be critical. Thus, to gain an understanding of the terrain component of these types of avalanches we examined terrain parameters associated with glide avalanche release as well as areas of consistent glide crack formation but no subsequent avalanches. Glide avalanche occurrences visible from the Going-to-the-Sun Road corridor in Glacier National Park, Montana from 2003-2013 were investigated using an avalanche database derived of daily observations each year from April 1 to June 15. This yielded 192 glide avalanches in 53 distinct avalanche paths. Each avalanche occurrence was digitized in a GIS using satellite, oblique, and aerial imagery as reference. Topographical parameters such as area, slope, aspect, elevation and elevation were then derived for the entire dataset utilizing GIS tools and a 10m DEM. Land surface substrate and surface geology were derived from National Park Service Inventory and Monitoring maps and U.S. Geological Survey surface geology maps, respectively. Surface roughness and glide factor were calculated using a four level classification index. . Then, each avalanche occurrence was aggregated to general avalanche release zones and the frequencies were compared. For this study, glide avalanches released in elevations ranging from 1300 to 2700 m with a mean aspect of 98 degrees (east) and a mean slope angle of 38 degrees. The mean profile curvature for all glide avalanches was 0.15 and a plan curvature of -0.01, suggesting a fairly linear surface (i.e. neither convex nor concave). The glide avalanches occurred in mostly bedrock made up of dolomite and limestone slabs and talus deposits with very few occurring in alpine meadows. However, not all glide avalanches failed as cohesive slabs on this bedrock surface. Consequently, surface roughness proved to be a useful descriptive variable to discriminate between slopes that avalanched and those that did not. Annual 'repeat offender' glide avalanche paths were characterized by smooth outcropping rock plates with stratification planes parallel to the slope. Combined with aspect these repeat offenders were also members of the highest glide category. Using this understanding of the role of topographic parameters on glide avalanche activity, a spatial terrain based model was developed to identify other areas with high glide avalanche potential outside of our immediate observation area.
Study Area
Publication type | Conference Paper |
---|---|
Publication Subtype | Conference Paper |
Title | Assessing the importance of terrain parameters on glide avalanche release |
Year Published | 2014 |
Language | English |
Publisher | International Snow Science Workshop Canada Inc. |
Contributing office(s) | Northern Rocky Mountain Science Center |
Description | 8 p. |
Larger Work Type | Book |
Larger Work Subtype | Conference publication |
Larger Work Title | Proceedings of the International Snow Science Workshop |
Conference Title | International Snow Science Workshop |
Conference Location | Banff, Alberta, Canada |
Conference Date | September 28-October 3, 2014 |
Country | United States |
State | Montana |
Other Geospatial | Glacier National Park |
Google Analytic Metrics | Metrics page |