Effect of nanoparticle size and natural organic matter composition on the bioavailability of polyvinylpyrrolidone- coated platinum nanoparticles to a model freshwater invertebrate
Links
- More information: Publisher Index Page (via DOI)
- Data Release: USGS data release - Laboratory data to assess the effect of nanoparticle size and natural organic matter composition on the bioavailability of platinum nanoparticles to a model freshwater invertebrate species
- Download citation as: RIS | Dublin Core
Abstract
The bioavailability of dissolved Pt(IV) and polyvinylpyrrolidone-coated platinum nanoparticles (PtNPs) of five different nominal hydrodynamic diameters (20, 30, 50, 75, and 95 nm) was characterized in laboratory experiments using the model freshwater snail Lymnaea stagnalis. Dissolved Pt(IV) and all nanoparticle sizes were bioavailable to L. stagnalis. Platinum bioavailability, inferred from conditional uptake rate constants, was greater for nanoparticulate than dissolved forms and increased with increasing nanoparticle hydrodynamic diameter. The effect of natural organic matter (NOM) composition on PtNP bioavailability was evaluated using six NOM samples at two nanoparticle sizes (20 and 95 nm). NOM suppressed the bioavailability of 95 nm PtNPs in all cases, and DOM reduced sulfur content exhibited a positive correlation with 95 nm PtNP bioavailability. The bioavailability of 20 nm PtNPs was only suppressed by NOM with a low reduced sulfur content. The physiological elimination of Pt accumulated after dissolved Pt(IV) exposure was slow and constant. In contrast, the elimination of Pt accumulated after PtNP exposures exhibited a triphasic pattern likely involving in vivo PtNP dissolution. This work highlights the importance of PtNP size and interfacial interactions with NOM on Pt bioavailability and suggests that in vivo PtNP transformations could yield unexpectedly higher adverse effects to organisms than dissolved exposure alone.
Publication type | Article |
---|---|
Publication Subtype | Journal Article |
Title | Effect of nanoparticle size and natural organic matter composition on the bioavailability of polyvinylpyrrolidone- coated platinum nanoparticles to a model freshwater invertebrate |
Series title | Environ. Sci. Technol. |
DOI | 10.1021/acs.est.0c05985 |
Volume | 55 |
Issue | 4 |
Year Published | 2021 |
Language | English |
Publisher | American Chemical Society |
Contributing office(s) | WMA - Earth System Processes Division |
Description | 10 p. |
First page | 2452 |
Last page | 2461 |
Google Analytic Metrics | Metrics page |