Nourishment has shown to be an effective method for short-term storm protection along barrier islands and sandy beaches by reducing flooding, wave attack and erosion. However, the ability of nourishment to mitigate the effects of storms and sea level rise (SLR) and improve coastal resilience over decadal time scales is not well understood. This study uses integrated models of storm-driven hydrodynamics, morphodynamics and post-storm dune recovery to assess the effectiveness of beach and dune nourishment on barrier island morphological resilience over a 30-year period, accounting for storms and a moderate amount of SLR. Results show that at the end of the 30 years, nourishment contributes to maintaining island volumes by increasing barrier height and width compared with a no-action scenario (i.e., no nourishment, only natural recovery). During storms where the collision regime was dominant, higher volumes of sand were lost from the wider beach in the nourishment scenario than in the no-action scenario. During stronger storms, nourishment reduced dune overtopping compared with the no-action scenario, allowing the island to maintain height and width. Additionally, nourishment was particularly effective in reducing breaching during back-to-back storms occurring in the same year.