Lakewide acoustic (AC) and bottom trawl (BT) surveys are conducted annually to generate indices of pelagic and benthic prey fish densities in Lake Michigan. The BT survey had been conducted each fall from 1973 through 2019 using 12-m trawls at depths ranging from 9 to 110 m and included 70 fixed locations distributed across seven transects; this survey estimates densities of seven prey fish species (i.e., alewife, bloater, rainbow smelt, deepwater sculpin, slimy sculpin, round goby, ninespine stickleback) as well as for age-0 yellow perch and large burbot. The AC survey, which serves to estimate densities of three prey fish species (i.e., alewife, bloater, and rainbow smelt), had been conducted each late summer/early fall from 2004-2019. The data generated from these surveys are used to estimate various population parameters that are, in turn, used by state and tribal agencies in managing Lake Michigan fish stocks.
The 2020 COVID-19 pandemic severely limited the Lake Michigan pelagic and benthic prey fish surveys. While the AC survey was not conducted, 32 tows across three of seven standard BT transects (Saugatuck, Waukegan and Port Washington) were completed during an abbreviated survey. Total prey fish biomass density from the abbreviated BT survey was 1.91 kg/ha, continuing a recent trend of historically low estimates below the long-term (i.e., 1973-2020) average of 34.94 kg/ha. Mean biomass of yearling and older (YAO) alewives in 2020 was 0.025 ± 0.017 kg/ha, tied for the lowest ever recorded on the BT survey. No age-0 alewife were captured in the bottom trawl and of the limited number (n=16) of alewife collected, none were older than age four. Bloater (1.39 kg/ha) and deepwater sculpin (0.47 kg/ha) accounted for greatest proportion of biomass in the BT survey, while biomass density of slimy sculpin, round goby and rainbow smelt were all ≤ 0.01 kg/ha. While caution must be taken when interpreting the results of the abbreviated BT survey, the estimates suggest that prey fish densities remain well below historical values.