Twenty-first-century projections of shoreline change along inlet-interrupted coastlines

Nature--Scientific Reports
By: , and 

Links

Abstract

Sandy coastlines adjacent to tidal inlets are highly dynamic and widespread landforms, where large changes are expected due to climatic and anthropogenic influences. To adequately assess these important changes, both oceanic (e.g., sea-level rise) and terrestrial (e.g., fluvial sediment supply) processes that govern the local sediment budget must be considered. Here, we present novel projections of shoreline change adjacent to 41 tidal inlets around the world, using a probabilistic, reduced complexity, system-based model that considers catchment-estuary-coastal systems in a holistic way. Under the RCP 8.5 scenario, retreat dominates (90% of cases) over the twenty-first century, with projections exceeding 100 m of retreat in two-thirds of cases. However, the remaining systems are projected to accrete under the same scenario, reflecting fluvial influence. This diverse range of response compared to earlier methods implies that erosion hazards at inlet-interrupted coasts have been inadequately characterised to date. The methods used here need to be applied widely to support evidence-based coastal adaptation.

Publication type Article
Publication Subtype Journal Article
Title Twenty-first-century projections of shoreline change along inlet-interrupted coastlines
Series title Nature--Scientific Reports
DOI 10.1038/s41598-021-93221-9
Volume 11
Year Published 2021
Language English
Publisher Nature
Contributing office(s) Pacific Coastal and Marine Science Center
Description 14038, 14 p.
Google Analytic Metrics Metrics page
Additional publication details