Recent advances in high-frequency environmental sensing and statistical approaches have greatly expanded the breadth of knowledge regarding aquatic ecosystem metabolism - the measurement and interpretation of gross primary productivity (GPP) and ecosystem respiration (ER). Aquatic scientists are poised to take advantage of widely available datasets and freely-available modeling tools to apply functional information gained through ecosystem metabolism to better environmental management. Historically, several logistical and conceptual factors have limited the widespread application of metabolism in management settings. Benefitting from new instrumental and modeling tools, it is now relatively straightforward to extend routine monitoring of dissolved oxygen (DO) to dynamic measures of aquatic ecosystem function (GPP & ER) and key physical processes such as gas exchange with the atmosphere (G). We review the current approaches for using DO data in environmental management with a focus on the United States, but briefly describe management frameworks in Europe and Canada. We highlight new applications of diel DO data and metabolism in regulatory settings and explore how they can be applied to managing and monitoring ecosystems. We then review existing data types and provide a short guide for implementing field measurements and modeling of ecosystem metabolic processes using currently available tools. Finally, we discuss research needed to overcome current conceptual limitations of applying metabolism in management settings. Despite challenges associated with modeling metabolism in rivers and lakes, rapid developments in this field have moved us closer to utilizing real-time estimates of GPP, ER and G to improve the assessment and management of environmental change.