River herring (Alosa spp.) are anadromous fish that enter North American Atlantic coastal rivers and lakes each spring to spawn. Anthropogenic structures such as dams and tide gates serve as physical obstacles that limit river herring access to spawning habitat. This study examined the physical and ecological components affecting herring passage through a tide gate by applying a time-to-event analysis framework to multiple movement behaviors derived from telemetry data. Herring had higher passage success early in the season (78%) than later (16%). Key behaviors that govern passage varied with diel period, tide, and flow direction through the gates. Furthermore, these behaviors shifted as the season progressed, consistent with the hypothesis that predator avoidance may be driving passage failure late in the spawning season.