Several Francisella spp. including F. noatunensis are regarded as important emerging pathogens of wild and farmed fish. However, very few studies have investigated the virulence factors that allow these bacterial species to be pathogenic in fish. The Francisella Pathogenicity Island (FPI) is a well-described, gene-dense region encoding major virulence factors for the genus Francisella. PdpA is a member of the pathogenicity determining protein genes encoded by the FPI that are implicated in the ability of the mammalian pathogen, F. tularensis, to escape and replicate in infected host cells. Using a sacB suicide approach, we generated pdpA knockouts to address the role of PdpA as a virulence factor for F. noatunensis. Because polarity can be an issue in gene-dense regions, we generated two different marker-based mutants in opposing polarity (FnoΔpdpA1 and ΔpdpA2). Both mutants were attenuated (p<0.0001) in zebrafish challenges and displayed impaired intracellular replication (p<0.05) and cytotoxicity (p<0.05), all of which could be restored to wild-type (WT) levels by complementation for FnoΔpdpA1. Importantly, differences were found for bacterial burden and induction of acute phase and pro-inflammatory genes for FnoΔpdpA1 and ΔpdpA2 compared to WT during acute infection. In addition, neither mutant resulted in significant histopathological changes. Finally, immunization with FnoΔpdpA1 led to protection (p<0.012) against an acute lethal-dose 40 challenge with WT Fno in the zebrafish model of infection. Taken together, this study further demonstrates physiological similarities within the genus Francisella relative to their phylogenetic relationships and the utility of zebrafish for addressing virulence factors for the genus.