Unlike traditional successional theory, Alternate Stable Equilibrium (ASE) theory posits that more than one community state is possible in a single environment, depending on the order that species arrive. ASE theory is often invoked in management situations where initial stressors have been removed, but native-dominated communities are not returning to degraded areas. Fundamental to this theory is the assumption that equilibria are maintained by positive feedbacks between colonizers and their environment. While ASE has been relatively well studied in aquatic ecosystems, more complex terrestrial systems offer multiple challenges, including species interactions across trophic levels that can lead to multiple feedbacks. Here, we discuss ASE theory as it applies to terrestrial, invaded ecosystems, and detail a case study from Hawaii that exemplifies how species interactions can favour the persistence of invaders, and how an understanding of interactions and feedbacks can be used to guide management. Our system includes intact native-dominated mesic forest and areas cleared for pasture, planted with non-native grasses, and later planted with a monoculture of a native nitrogen-fixing tree in an effort to restore forests. We discuss interactions between birds, understorey fruiting native species, understorey non-native grasses, soils and bryophytes in separate feedback mechanisms, and explain our efforts to identify which of these feedbacks is most important to address in a management context. Finally, we suggest that using models can help overcome some of the challenges that terrestrial ecosystems pose when studying ASE.