A new approach to evaluate and reduce uncertainty of model-based biodiversity projections for conservation policy formulation
Links
- More information: Publisher Index Page (via DOI)
- Open Access Version: External Repository
- Download citation as: RIS | Dublin Core
Abstract
Biodiversity projections with uncertainty estimates under different climate, land-use, and policy scenarios are essential to setting and achieving international targets to mitigate biodiversity loss. Evaluating and improving biodiversity predictions to better inform policy decisions remains a central conservation goal and challenge. A comprehensive strategy to evaluate and reduce uncertainty of model outputs against observed measurements and multiple models would help to produce more robust biodiversity predictions. We propose an approach that integrates biodiversity models and emerging remote sensing and in-situ data streams to evaluate and reduce uncertainty with the goal of improving policy-relevant biodiversity predictions. In this article, we describe a multivariate approach to directly and indirectly evaluate and constrain model uncertainty, demonstrate a proof of concept of this approach, embed the concept within the broader context of model evaluation and scenario analysis for conservation policy, and highlight lessons from other modeling communities.
Publication type | Article |
---|---|
Publication Subtype | Journal Article |
Title | A new approach to evaluate and reduce uncertainty of model-based biodiversity projections for conservation policy formulation |
Series title | BioScience |
DOI | 10.1093/biosci/biab094 |
Volume | 71 |
Issue | 12 |
Year Published | 2021 |
Language | English |
Publisher | Oxford Academic |
Contributing office(s) | Earth Resources Observation and Science (EROS) Center, National Climate Adaptation Science Center |
Description | 13 p. |
First page | 1261 |
Last page | 1273 |
Google Analytic Metrics | Metrics page |