Drivers of realized satellite tracking duration in marine turtles

Movement Ecology
By: , and 

Links

Abstract

Background

Satellite tags have revolutionized our understanding of marine animal movements. However, tags may stop transmitting for many reasons and little research has rigorously examined tag failure. Using a long-term, large-scale, multi-species dataset, we evaluated factors influencing tracking duration of satellite tags to inform study design for future tracking studies.

Methods

We leveraged data on battery status transmitted with location data, recapture events, and number of transmission days to probabilistically quantify multiple potential causes of failure (i.e., battery failure, premature detachment, and tag damage/fouling). We used a combination of logistic regressions and an ordinary linear model including several predictor variables (i.e., tag type, battery life, species, sex, size, and foraging region).

Results

We examined subsets of data from 360 satellite tags encompassing 86,889 tracking days deployed on four species of marine turtles throughout the Gulf of Mexico, Caribbean, and Bahamas from 2008 to 2019. Only 4.1% of batteries died before failure due to other causes. We observed species-specific variation in how long tags remain attached: hawksbills retained 50% of their tags for 1649 days (95% CI 995–1800), loggerheads for 584 days (95% CI 400–690), and green turtles for 294 days (95% CI 198–450). Estimated tracking duration varied by foraging region (Caribbean: 385 days; Bahamas: 356; southern Gulf of Mexico [SGOM]: 276, northern Gulf of Mexico [NGOM]: 177). Additionally, we documented species-specific variation in estimated tracking duration among foraging regions. Based on sensor data, within the Gulf of Mexico, across species, we estimated that 50% of tags began to foul after 83 95% CI (70–120) days.

Conclusions

The main factor that limited tracking duration was tag damage (i.e., fouling and/or antenna breakage). Turtles that spent most of their time in the Gulf of Mexico had shorter tracking durations than those in the Bahamas and Caribbean, with shortest durations observed in the NGOM. Additionally, tracking duration varied by species, likely as a result of behaviors that damage tags. This information will help researchers, tag companies, permitting agencies, and funders better predict expected tracking durations, improving study designs for imperiled marine turtles. Our results highlight the heterogeneity in telemetry device longevity, and we provide a framework for researchers to evaluate telemetry devices with respect to their study objectives.

Study Area

Publication type Article
Publication Subtype Journal Article
Title Drivers of realized satellite tracking duration in marine turtles
Series title Movement Ecology
DOI 10.1186/s40462-020-00237-3
Volume 9
Year Published 2021
Language English
Publisher Springer Nature
Contributing office(s) Wetland and Aquatic Research Center
Description 1, 14 p.
Country Bahamas, Brazil, Honduras, Mexico, Nicaragua, United States, Virgin Islands
State Alabama, Florida, Louisiana, Mississippi, Texas
Other Geospatial Biscayne, Buck Island Reef National Monument, Caribbean Sea, Chandeleur Islands, Dry Tortugas, Everglades National Park, Gulf of Mexico, Gulf Shores, Pascagoula, Port Fourchon, Ship Shoal
Google Analytic Metrics Metrics page
Additional publication details