Climatic aridity shapes post-fire interactions between Ceanothus spp. and Douglas-fir (Pseudotsuga menziesii) across the Klamath Mountains

Forests
By: , and 

Links

Abstract

Climate change is leading to increased drought intensity and fire frequency, creating early-successional landscapes with novel disturbance–recovery dynamics. In the Klamath Mountains of northwestern California and southwestern Oregon, early-successional interactions between nitrogen (N)-fixing shrubs (Ceanothus spp.) and long-lived conifers (Douglas-fir) are especially important determinants of forest development. We sampled post-fire vegetation and soil biogeochemistry in 57 plots along gradients of time since fire (7–28 years) and climatic water deficit (aridity). We found that Ceanothus biomass increased, and Douglas-fir biomass decreased with increasing aridity. High aridity and Ceanothus biomass interacted with lower soil C:N more than either factor alone. Ceanothus biomass was initially high after fire and declined with time, suggesting a large initial pulse of N-fixation that could enhance N availability for establishing Douglas-fir. We conclude that future increases in aridity and wildfire frequency will likely limit post-fire Douglas-fir establishment, though Ceanothus may ameliorate some of these impacts through benefits to microclimate and soils. Results from this study contribute to our understanding of the effects of climate change and wildfires on interspecific interactions and forest dynamics. Management seeking to accelerate forest recovery after high-severity fire should emphasize early-successional conifer establishment while maintaining N-fixing shrubs to enhance soil fertility.

Study Area

Publication type Article
Publication Subtype Journal Article
Title Climatic aridity shapes post-fire interactions between Ceanothus spp. and Douglas-fir (Pseudotsuga menziesii) across the Klamath Mountains
Series title Forests
DOI 10.3390/f12111567
Volume 12
Issue 11
Year Published 2021
Language English
Publisher MDPI
Contributing office(s) Forest and Rangeland Ecosystem Science Center
Description 1567, 15 p.
Country United States
State California, Oregon
Other Geospatial Klamath Mountains
Google Analytic Metrics Metrics page
Additional publication details