Forest covers about one-third of the land area of the conterminous United States (CONUS) and plays an important role in offsetting carbon emissions and supporting local economies. Growing interest in forests as relatively cost-effective nature-based climate solutions, particularly restoration and reforestation activities, has increased the demand for information on forest regrowth and recovery following natural and anthropogenic disturbances (e.g., fire, harvest, or thinning). However, a wall-to-wall mapping of the CONUS tree regrowth duration at an annual time interval and 30-m resolution is still challenging. In this study, we utilized the annual land cover products to develop a dataset to quantify forest regrowth duration for CONUS over 1985–2017. The land cover data used to derive the tree regrowth duration map is from the primary land cover product in the U.S. Geological Survey’s Land Change Monitoring, Assessment, and Projection (LCMAP) collection. The LCMAP product used all available Landsat images to detect disturbances over forest and classify Grass/Shrub to Tree Cover transitions on an annual basis. The average regrowth duration was then calculated for each pixel. The regrowth duration map was validated using human interpreted annual reference data that were collected independently. The validation results show one-year of underestimation and 6-year standard deviation of error between the reference data and regrowth duration map. In southeastern CONUS, where major tree regrowth activities have been observed, our map showed higher accuracy with less than one-year bias and 3.6 years standard deviation of error. Forest in the southeast took around 5 years to recover, which was faster than other regions of CONUS. Many pixels had multiple disturbances during the 33-year study period in the region. The spatial pattern of the tree regrowth indicated intense harvesting activities in this region. The Pacific Northwest coast region was the second main area of tree regrowth, but this region often took multiple decades to recover. Given increasing interest in forests as nature-based climate solutions, the tree regrowth duration map can be used to assess reforestation activities as well as forest recovery following natural disturbance and harvesting.