Acoustic energy originating from explosions, sonic booms, bolides and thunderclaps have been recorded on seismometers since the 1950s. Direct pressure loading from the passing acoustic wave has been modelled and consistently observed to produce ground deformations of the near surface that have retrograde elliptical particle motions. In the past decade, increased deployments of colocated seismometers and infrasound sensors have driven efforts to use the transfer function between direct acoustic-to-seismic coupling to infer near-surface material properties including seismic velocity structure and elastic moduli. In this study, we use a small aperture (≈600 m) array of broadband seismometers installed in different manners and depths in both granite and sedimentary overburden to understand the fundamental nature and repeatability of seismic excitation from 1 to 15 Hz using horizontally propagating acoustic waves generated by 97 local (2–10 km) explosions. In agreement with modelling, we find that the ground motions induced by acoustic-to-seismic coupling attenuate rapidly with depth. We confirm the modelled relation between acoustic and ground motion amplitudes, but show that within one acoustic wavelength, the uncertainty in the transfer coefficient between seismic and acoustic energy at a given seismic station increases linearly with separation distance between the seismic and acoustic sensor. We attribute this observation to the rapid decorrelation of the infrasonic wavefield across small spatial scales and recommend colocating seismic and infrasound sensors for use in studies seeking to invert for near-surface material properties. Additionally, contrary to acoustic-to-seismic coupling theory and prior observations, we find that seismometers emplaced in granite do not record retrograde elliptical particle motions in response to direct pressure loading. We rule out seismometer tilt effects as a likely source of this observations and suggest that existing models of acoustic-to-seismic excitation may be too simplistic for seismometers placed in high rigidity materials.