Subaerial volcaniclastic deposits are produced principally by volcanic debris avalanches, pyroclastic density currents, lahars, and tephra falls. Those deposits have widely ranging geomorphic and sedimentologic characteristics; they can mantle, modify, or create new topography, and their emplacement and subsequent reworking can have an outsized impact on the geomorphic and sedimentologic responses of watersheds surrounding, and channels draining, volcanoes. Volcaniclastic deposits provide a wealth of information about eruptive histories, volcanic processes, and landscape responses to eruptions. The volcanic processes that produce these deposits, and consequently the character and sedimentary structures of the deposits themselves, are influenced by initiation mechanism. Deposit preservation is affected by deposit magnitude, texture, and composition, depositional environment, and climate regime. Innovative analyses of deposits from several modern eruptions and advancements in physical and numerical modelling have vastly improved our understanding of volcanic processes, interpretations of eruptive histories, and recognition of the hazards posed by volcanic eruptions. This contribution highlights and summarizes major advances that have occurred in the past few
decades in understanding of volcaniclastic deposits and linkages with volcanic processes.