Resilience and vulnerability of permafrost to climate change

Canadian Journal of Forest Research
By: , and 

Links

Abstract

The resilience and vulnerability of permafrost to climate change depends on complex interactions among topography, water, soil, vegetation, and snow, which allow permafrost to persist at mean annual air temperatures (MAATs) as high as +2 °C and degrade at MAATs as low as –20 °C. To assess these interactions, we compiled existing data and tested effects of varying conditions on mean annual surface temperatures (MASTs) and 2 m deep temperatures (MADTs) through modeling. Surface water had the largest effect, with water sediment temperatures being ~10 °C above MAAT. A 50% reduction in snow depth reduces MADT by 2 °C. Elevation changes between 200 and 800 m increases MAAT by up to 2.3 °C and snow depths by ~40%. Aspect caused only a ~1 °C difference in MAST. Covarying vegetation structure, organic matter thickness, soil moisture, and snow depth of terrestrial ecosystems, ranging from barren silt to white spruce (Picea glauca (Moench) Voss) forest to tussock shrub, affect MASTs by ~6 °C and MADTs by ~7 °C. Groundwater at 2–7 °C greatly affects lateral and internal permafrost thawing. Analyses show that vegetation succession provides strong negative feedbacks that make permafrost resilient to even large increases in air temperatures. Surface water, which is affected by topography and ground ice, provides even stronger negative feedbacks that make permafrost vulnerable to thawing even under cold temperatures.

Study Area

Publication type Article
Publication Subtype Journal Article
Title Resilience and vulnerability of permafrost to climate change
Series title Canadian Journal of Forest Research
DOI 10.1139/X10-060
Volume 40
Issue 7
Year Published 2010
Language English
Publisher Canadian Science Publishing
Description 18 p.
First page 1219
Last page 1236
Country United States
State Alaska
Google Analytic Metrics Metrics page
Additional publication details