Predicting flood damage probability across the conterminous United States
Links
- More information: Publisher Index Page (via DOI)
- Data Release: USGS data release - Data and Code for Predicting Flood Damage Probability Across the Conterminous United States
- Open Access Version: Publisher Index Page
- Download citation as: RIS | Dublin Core
Abstract
Floods are the leading cause of natural disaster damages in the United States, with billions of dollars incurred every year in the form of government payouts, property damages, and agricultural losses. The Federal Emergency Management Agency oversees the delineation of floodplains to mitigate damages, but disparities exist between locations designated as high risk and where flood damages occur due to land use and climate changes and incomplete floodplain mapping. We harnessed publicly available geospatial datasets and random forest algorithms to analyze the spatial distribution and underlying drivers of flood damage probability caused by excessive rainfall and overflowing water bodies across the conterminous United States. From this, we produced the first spatially complete map of flood damage probability for the nation, along with spatially explicit standard errors for four selected cities. We trained models using the locations of historical reported flood damage events (n = 71,434) and a suite of geospatial predictors (e.g., flood severity, climate, socio-economic exposure, topographic variables, soil properties, and hydrologic characteristics). We developed independent models for each hydrologic unit code level 2 watershed and generated a flood damage probability for each 100-m pixel. Our model classified damage or no damage with an average area under the curve accuracy of 0.75; however, model performance varied by environmental conditions, with certain land cover classes (e.g., forest) resulting in higher error rates than others (e.g., wetlands). Our results identified flood damage probability hotspots across multiple spatial and regional scales, with high probabilities common in both inland and coastal regions. The highest flood damage probabilities tended to be in areas of low elevation, in close proximity to streams, with extreme precipitation, and with high urban road density. Given rapid environmental changes, our study demonstrates an efficient approach for updating flood damage probability estimates across the nation.
Study Area
Publication type | Article |
---|---|
Publication Subtype | Journal Article |
Title | Predicting flood damage probability across the conterminous United States |
Series title | Environmental Research Letters |
DOI | 10.1088/1748-9326/ac4f0f |
Volume | 17 |
Year Published | 2022 |
Language | English |
Publisher | IOP Publishing |
Contributing office(s) | South Atlantic Water Science Center, Southeast Climate Adaptation Science Center |
Description | 034006, 15 p. |
Country | United States |
Google Analytic Metrics | Metrics page |