Data on the demography and distribution of wildlife populations are important for informing conservation and management decisions; however, determination of life history traits and population trends often are elusive. All four extant species in the order Sirenia are deemed vulnerable to extinction; therefore, determining the demography and distribution for populations worldwide is crucial. Aerial surveys, radio-tagging and tracking, genetic sampling and analyses, health assessments, carcass examination, and photographic documentation are all techniques used to study sirenian populations. A 40 +-year computer-aided catalog of images and demography data collected on Florida manatees enables searches of individuals by descriptions of feature (scar) types and has enabled estimates of annual survival and reproductive rates, documented extra-limital movements, and advanced modeling designs. Photography is discussed as a method for the documentation of unique and acquired features specifically on Florida manatees. By means of these features, individual Florida manatees have been re-identified as far from their established range as Cape Cod, Massachusetts, Houston, Texas, and in Cuba, The Bahamas, and Mexico. The length of gestation (11–13 months) and calf dependency (1–3 years), and potential longevity in the wild (> 50 years), have been verified. To meet the challenge of an increasing number of images collected with the advent of digital photography, there has been an increasing interest and potential for new techniques to assist with individual identification. Several researchers are utilizing drones and artificial intelligence to find, photograph, and streamline the individual identification of sirenians as well as other marine mammal species. New techniques have potential to simplify the photographic identification of Florida manatees. Photographic documentation could be a model for demographic and distribution research of sirenian populations outside of Florida and as a tool to monitor the viability of sirenian populations, particularly as threats emerge due to anthropogenic pressures and global climate change.