Heterogeneous stream-reservoir graph networks with data assimilation

IEEE International Conference on Data Mining (ICDM)
By: , and 

Links

Abstract

Accurate prediction of water temperature in streams is critical for monitoring and understanding biogeochemical and ecological processes in streams. Stream temperature is affected by weather patterns (such as solar radiation) and water flowing through the stream network. Additionally, stream temperature can be substantially affected by water releases from man-made reservoirs to downstream segments. In this paper, we propose a heterogeneous recurrent graph model to represent these interacting processes that underlie stream-reservoir networks and improve the prediction of water temperature in all river segments within a network. Because reservoir release data may be unavailable for certain reservoirs, we further develop a data assimilation mechanism to adjust the deep learning model states to correct for the prediction bias caused by reservoir releases. Our evaluation for the Delaware River Basin has demonstrated the superiority of our proposed method over multiple existing methods. We have extensively studied the effect of the data assimilation mechanism under different scenarios.
Publication type Article
Publication Subtype Journal Article
Title Heterogeneous stream-reservoir graph networks with data assimilation
Series title IEEE International Conference on Data Mining (ICDM)
DOI 10.1109/ICDM51629.2021.00117
Year Published 2021
Language English
Publisher IEEE
Contributing office(s) Wisconsin Water Science Center, WMA - Integrated Information Dissemination Division
Description 6 p.
First page 1024
Last page 1029
Google Analytic Metrics Metrics page
Additional publication details