Random forest classification of multitemporal Landsat 8 spectral data and P\phenology metrics for land cover mapping in the Sonoran and Mojave Deserts

Remote Sensing
By: , and 

Links

Abstract

Geospatial data and tools evolve as new technologies are developed and landscape change occurs over time. As a result, these data may become outdated and inadequate for supporting critical habitat-related work across the international boundary in the Sonoran and Mojave Deserts Bird Conservation Region (BCR 33) due to the area’s complex vegetation communities and the discontinuity in data availability across the United States (US) and Mexico (MX) border. This research aimed to produce the first 30 m continuous land cover map of BCR 33 by prototyping new methods for desert vegetation classification using the Random Forest (RF) machine learning (ML) method. The developed RF classification model utilized multitemporal Landsat 8 Operational Land Imager spectral and vegetation index data from the period of 2013–2020, and phenology metrics tailored to capture the unique growing seasons of desert vegetation. Our RF model achieved an overall classification F-score of 0.80 and an overall accuracy of 91.68%. Our results portrayed the vegetation cover at a much finer resolution than existing land cover maps from the US and MX portions of the study area, allowing for the separation and identification of smaller habitat pockets, including riparian communities, which are critically important for desert wildlife and are often misclassified or nonexistent in current maps. This early prototyping effort serves as a proof of concept for the ML and data fusion methods that will be used to generate the final high-resolution land cover map of the entire BCR 33 region.

Study Area

Publication type Article
Publication Subtype Journal Article
Title Random forest classification of multitemporal Landsat 8 spectral data and P\phenology metrics for land cover mapping in the Sonoran and Mojave Deserts
Series title Remote Sensing
DOI 10.3390/rs15051266
Volume 15
Issue 5
Year Published 2023
Language English
Publisher MDPI
Contributing office(s) Southwest Biological Science Center
Description 1266, 23 p.
Country Mexico, United States
Google Analytic Metrics Metrics page
Additional publication details