Spatial variability in vertical accretion and carbon sequestration in salt marsh soils of an urban estuary

Wetlands
By: , and 

Links

Abstract

Salt marshes in New York City’s Jamaica Bay have been disappearing and deteriorating since early 1900s, resulting in the loss of long-term accumulated carbon storage. However, the spatial variations and mechanisms in vertical accretion and soil organic carbon (SOC) sequestration across this highly urbanized estuary remains unclear. In this study, we collected soil cores to a depth of ~ 50 cm across Jamaica Bay to study the spatial variability in long-term (50–100 years) vertical accretion, the accumulation of mineral sediment and organic matter, and SOC sequestration. Results of gamma spectrometry analysis of 137Cs and 210Pb show that there was moderate spatial variability in long-term vertical accretion rates across Jamaica Bay study sites (mean: 0.48 ± 0.13 cm yr− 1, range: 0.36–0.78 cm yr− 1). This local scale spatial variability in vertical accretion is largely driven by spatial variations of sedimentation. The magnitude of the long-term vertical accretion in Jamaica Bay is significantly correlated with organic matter accumulation, but not with mineral sediment. However, the role of organic matter in contributing to vertical accretion has been declining. The declining role of organic matter to vertical accretion is reflected by the lower SOC sequestration rate (mean: 128 and range: 26–189 g C m− 2 yr− 1 using the 210Pb dating technique) compared to the global mean salt marsh SOC sequestration rate (244 g C m− 2 yr− 1). This is especially so on the marsh islands in the degrading western part of the bay where SOC sequestration was less than half the global average.

Study Area

Publication type Article
Publication Subtype Journal Article
Title Spatial variability in vertical accretion and carbon sequestration in salt marsh soils of an urban estuary
Series title Wetlands
DOI 10.1007/s13157-023-01699-y
Volume 43
Issue 5
Year Published 2023
Language English
Publisher Springer Nature
Contributing office(s) Wetland and Aquatic Research Center
Description 49, 16 p.; Data Release
Country United States
State New York
City New York City
Other Geospatial Jamaica Bay
Google Analytic Metrics Metrics page
Additional publication details