Direct evidence for fluid pressure, dilatancy, and compaction affecting slip in isolated faults

Geophysical Research Letters
By: , and 

Links

Abstract

Earthquake instability occurs as a result of strength loss during sliding on a fault. It has been known for over 50 years that fault compaction or dilatancy may cause significant weakening or strengthening by dramatically changing the fluid pressure trapped in faults. Despite this fundamental importance, we have no real understanding of the exact conditions that lead to compaction or dilation during nucleation or rupture. To date, no direct measurements of pore pressure changes during slip in hydraulically isolated faults have been reported. We show direct examples of fluid pressure variations during nucleation and rupture using a miniature pressure transducer embedded in an experimental fault. We demonstrate that fluids are not only significant in controlling fault behavior, but can provide the dominant mechanism controlling fault stability. The effect of fluid pressure changes can exceed frictional variations predicted by rate- and state-dependent friction laws, exerting fundamental controls on earthquake rupture initiation.
Publication type Article
Publication Subtype Journal Article
Title Direct evidence for fluid pressure, dilatancy, and compaction affecting slip in isolated faults
Series title Geophysical Research Letters
DOI 10.1029/2019GL086767
Volume 47
Issue 16
Year Published 2020
Language English
Publisher American Geophysical Union
Contributing office(s) Earthquake Science Center
Description e2019GL086767, 9 p.
Google Analytic Metrics Metrics page
Additional publication details