Wave runup and inundation dynamics on a perched beach

Geomorphology
By: , and 

Links

Abstract

Sandy beaches perched over rocky shore platforms are common globally, yet their mixed sand and rocky morphology present challenges for quantifying and predicting wave runup and inundation. For typical linear beach profiles, simple relationships can be made between vertical runup and horizontal inundation based on beach slope. However, as topographic irregularities increase, substantial deviations from these relationships can occur. Shore platforms often experience a range of beach states, from full sand coverage (accreted) to complete shore platform erosion (exposed). As a result, existing methods for quantifying runup and inundation on purely sandy beaches are generally not directly applicable to these coastlines. To advance our understanding of runup and inundation on perched beaches, the aim of this work is three-fold: (1) to provide a method for quantifying beach slope and runup across a range of perched beach profiles, (2) to assess the relationship between vertical runup and horizontal inundation observations, and (3) to understand how different hydrodynamic mechanisms (i.e., setup, swash) contribute to runup during different beach states. To achieve this, we conducted an 8-month field study along a perched beach in southwestern Australia that experiences large seasonal variations in beach state and wave climate. A method was developed to measure runup and beach slope when only the topography shoreward of the shore platform edge was known. Using this method, an approximately linear relationship between inundation and runup was identified by incorporating beach slope. Our observations suggest that the components that dominate runup on perched beaches were primarily dependent on beach state (i.e., accreted versus exposed). Runup was dominated by swash in the infragravity band when in an accreted beach state, and setup when in an exposed beach state. These results aid our understanding of coastal processes on perched beaches, while providing new methods applicable to a range of perched beach profiles.

Study Area

Publication type Article
Publication Subtype Journal Article
Title Wave runup and inundation dynamics on a perched beach
Series title Geomorphology
DOI 10.1016/j.geomorph.2023.108751
Volume 435
Year Published 2023
Language English
Publisher Elsevier
Contributing office(s) St. Petersburg Coastal and Marine Science Center
Description 108751, 17 p.
Country Australia
Google Analytic Metrics Metrics page
Additional publication details