A multi-ecosystem prioritization framework to balance competing habitat conservation needs of multiple species in decline
Links
- More information: Publisher Index Page (via DOI)
- Data Releases:
- USGS data release - Prioritized sites for conifer removal within the Utah portion of Bird Conservation Region 16, 2020
- USGS data release - Predicted 2020 densities for 11 songbird species across the western United States
- Open Access Version: Publisher Index Page
- Download citation as: RIS | Dublin Core
Abstract
Context
Individual species often drive habitat restoration action; however, management under this paradigm may negatively affect non-target species. Prioritization frameworks which explicitly consider benefits to target species while minimizing consequences for non-target species may improve management strategies and outcomes.
Objectives
We examined extents to which conifer removal, an approach frequently implemented to restore sagebrush ecosystems, can be conducted without detrimental effects to conifer-associated species, including the imperiled Pinyon Jay (Gymnorhinus cyanocephalus). Additionally, we prioritized sites for conifer removal, and predicted abundance responses for multiple species following simulated conifer removal at selected sites to achieve variable management objectives.
Methods
We used model-predicted changes in species’ densities following simulated conifer removal to identify optimal removal sites under single species, multi-species (ecosystem), and multi-ecosystem management scenarios. We simulated conifer removal at prioritized sites and evaluated resulting changes in abundance for six passerine species.
Results
Management prioritized for a single species (Brewer’s Sparrow) provided the greatest per-unit-effort benefits for that species but resulted in the lowest population outcomes for all other species considered. In comparison, prioritizations for multiple species within a single ecosystem (i.e., pinyon–juniper or sagebrush) resulted in larger population benefits for species associated with that ecosystem and reduced detrimental effects on non-target species associated with another ecosystem. For example, single species management for Brewer’s Sparrow resulted in an average increase of 1.38% for sagebrush-associated species and a 4.58% decrease for pinyon–juniper associated species. In contrast, when managing for multiple sagebrush-associated species sagebrush-associated songbird populations increased by 3.98% and pinyon–juniper associated species decreased by 2.36%, on average.
Conclusions
Our results illustrate single species management can result in detrimental outcomes and/or opportunity costs for non-target species compared to management designed to benefit multiple species. Our framework can be used to balance undesired consequences for non-target species and is adaptable for other systems and taxa.
Publication type | Article |
---|---|
Publication Subtype | Journal Article |
Title | A multi-ecosystem prioritization framework to balance competing habitat conservation needs of multiple species in decline |
Series title | Landscape Ecology |
DOI | 10.1007/s10980-023-01712-z |
Volume | 38 |
Year Published | 2023 |
Language | English |
Publisher | Springer |
Contributing office(s) | Fort Collins Science Center |
Description | 19 p. |
First page | 2795 |
Last page | 2813 |
Google Analytic Metrics | Metrics page |