Transportation agencies need information about the potential effects of climate change on the volume, quality, and treatment of stormwater to mitigate potential effects of runoff on receiving waters. To address these concerns, the U.S. Geological Survey and the Federal Highway Administration used the Coupled Model Intercomparison Project tool and the Stochastic Empirical Loading and Dilution Model to perform space-for-time stormwater quality analyses. This study indicated that spatial variations in precipitation statistics within and adjacent to southern New England are greater than projected climate-related changes for the centroid of this region. A dilution-factor analysis indicated that highway runoff would become a greater proportion of downstream flows if average event volumes or time between event midpoints increase and would become a smaller proportion of downstream flows if event durations increase. Highway-runoff yield analyses for total phosphorus (TP) indicate that uncertainty in water quality statistics results in variations in long-term average yields from about 1.69 to 7.96 times higher than the lowest TP values simulated. In comparison, variations in precipitation statistics cause yield variations that ranged from 1.41 to 1.76 for the different simulated concentrations. An analysis of stormwater treatment indicated that uncertainties in runoff treatment variables are also larger than the magnitude of climate variations. This study does not question the potentially large climate-related changes in hydrologic and hydraulic variables expected to occur in the foreseeable future. It does indicate that uncertainties in the current data and potential effects of land use change on stormwater quality and treatment variables are larger than the projected effects of climate change.