Exploring landscape and geologic controls on spatial patterning of streambank groundwater discharge in a mixed land use watershed

Hydrological Processes
By: , and 



Preferential groundwater discharge features along stream corridors are ecologically important at local and stream network scales, yet we lack quantification of the multiscale controls on the spatial patterning of groundwater discharge. Here we identify physical attributes that best explain variation in the presence and lateral extent of preferential groundwater discharges along two 5th order streams, the Housatonic and Farmington Rivers, and 32 1st to 4th order reaches across the Farmington River network. We mapped locations of preferential groundwater discharge exposed along streambanks using handheld thermal infrared cameras paired with high-resolution topographic and land use land cover datasets, surficial soil characteristic maps, and depth-to-bedrock geophysical measurements. The unconfined Housatonic River, MA, USA (12 km) had fewer discharge locations and less lateral extent (41 discharge locations with 38 m of active discharge/km of river) compared to the partially confined Farmington River, CT, USA (26 km; 169 discharge locations with 129 m of active discharge/km of river). Using a moving window analysis, we found along both rivers that discharge was more likely to occur where bank slopes were steeper, floodplain extent was narrower, and degree of confinement was higher. Along the Farmington River, groundwater discharge was more likely to occur where saturated hydraulic conductivity was higher and depth-to-bedrock was shallower. Among the 32 stream reaches surveyed (33.2 km of total stream length) within the Farmington River watershed, preferential discharge was observed in all but two stream reaches, varied from 0 to 25% of lateral extent along stream banks (mean = 6%), and was more likely to occur where stream reach slopes were steep, saturated hydraulic conductivity was high, and watershed urbanization was low. Our results show that, though both surface (e.g., topographic, land use land cover) and subsurface (e.g., soil characteristics, bedrock depth) factors control the prevalence of streambank preferential groundwater discharge, the dominant controls vary across valley settings and stream sizes.

Publication type Article
Publication Subtype Journal Article
Title Exploring landscape and geologic controls on spatial patterning of streambank groundwater discharge in a mixed land use watershed
Series title Hydrological Processes
DOI 10.1002/hyp.15112
Volume 38
Issue 3
Year Published 2024
Language English
Publisher Wiley
Contributing office(s) New England Water Science Center
Description e15112, 17 p.
Country United States
State Connecticut, Massachusetts
Google Analytic Metrics Metrics page
Additional publication details