Upland Yedoma taliks are an unpredicted source of atmospheric methane
Links
- More information: Publisher Index Page (via DOI)
- Open Access Version: Publisher Index Page
- Download citation as: RIS | Dublin Core
Abstract
Landscape drying associated with permafrost thaw is expected to enhance microbial methane oxidation in arctic soils. Here we show that ice-rich, Yedoma permafrost deposits, comprising a disproportionately large fraction of pan-arctic soil carbon, present an alternate trajectory. Field and laboratory observations indicate that talik (perennially thawed soils in permafrost) development in unsaturated Yedoma uplands leads to unexpectedly large methane emissions (35–78 mg m−2 d−1 summer, 150–180 mg m−2 d−1 winter). Upland Yedoma talik emissions were nearly three times higher annually than northern-wetland emissions on an areal basis. Approximately 70% emissions occurred in winter, when surface-soil freezing abated methanotrophy, enhancing methane escape from the talik. Remote sensing and numerical modeling indicate the potential for widespread upland talik formation across the pan-arctic Yedoma domain during the 21st and 22nd centuries. Contrary to current climate model predictions, these findings imply a positive and much larger permafrost-methane-climate feedback for upland Yedoma.
Study Area
Publication type | Article |
---|---|
Publication Subtype | Journal Article |
Title | Upland Yedoma taliks are an unpredicted source of atmospheric methane |
Series title | Nature Communications |
DOI | 10.1038/s41467-024-50346-5 |
Volume | 15 |
Year Published | 2024 |
Language | English |
Publisher | Nature |
Contributing office(s) | Geology, Geophysics, and Geochemistry Science Center |
Description | 6056, 17 p. |
Country | Canada, Russia, United States |
State | Alaska, Siberia |
Google Analytic Metrics | Metrics page |