Aboveground carbon stocks across a hydrological gradient: Ghost forests to non-tidal freshwater forested wetlands

Forests
By: , and 

Metrics

1
Crossref references
Web analytics dashboard Metrics definitions

Links

Abstract

Upper estuarine forested wetlands (UEFWs) play an important role in the sequestration of atmospheric carbon (C), which is facilitated by their position at the boundary of terrestrial and maritime environments but threatened by sea level rise. This study assessed the change in aboveground C stocks along the estuarine–riverine hydrogeomorphic gradient spanning salt-impacted freshwater tidal forested wetlands to freshwater forested wetlands in seasonally tidal and nontidal landscape positions. Standing stocks of C in forested wetlands were measured along two major coastal river systems, the Winyah Bay in South Carolina and the Savannah River in Georgia (USA), replicating and expanding a previous study to allow the assessment of change over time. Aboveground C stocks on these systems averaged 172.9 Mg C ha−1, comparable to those found in UEFWs across the globe and distinct from the terrestrial forested ecosystems they are often considered to be a part of during large-scale C inventory efforts. Groundwater salinity conditions as low as 1.3 ppt were observed in conjunction with losses of aboveground C. When viewed in context alongside expected sea level rise and corresponding saltwater intrusion estimates, these data suggest a marked decrease in aboveground C stocks in forested wetlands situated in and around tidal estuaries.

Study Area

Publication type Article
Publication Subtype Journal Article
Title Aboveground carbon stocks across a hydrological gradient: Ghost forests to non-tidal freshwater forested wetlands
Series title Forests
DOI 10.3390/f15091502
Volume 15
Issue 9
Publication Date August 28, 2024
Year Published 2024
Language English
Publisher MDPI
Contributing office(s) Wetland and Aquatic Research Center, Florence Bascom Geoscience Center
Description 1502, 16 p.
Country United States
State Georgia, South Carolina
Other Geospatial Savannah River, Winyah Bay
Additional publication details