Fish health altered by contaminants and low water temperatures compounded by prolonged regional drought in the Lower Colorado River Basin, USA

Toxics
By: , and 

Links

Abstract

The goal of this study was to assess health of male Common Carp (carp, Cyprinus carpio) at four sites with a wide range in environmental organic contaminant (EOC) concentrations and water temperatures in Lake Mead National Recreation Area NV/AZ, US, and the potential influence of regional drought. Histological and reproductive biomarkers were measured in 17–30 carp at four sites and 130 EOCs in water per site were analyzed using passive samplers in 2010. Wide ranges among sites were noted in total EOC concentrations (>10Xs) and water temperature/degree days (10Xs). In 2007/08, total polychlorinated biphenyls (tPCBs) in fish whole bodies from Willow Beach (WB) in the free-flowing Colorado River below Hoover Dam were clearly higher than at the other sites. This was most likely due to longer exposures in colder water (12–14 °C) and fish there having the longest lifespan (up to 54 years) for carp reported in the Colorado River Basin. Calculated estrogenicity in water exceeded long-term, environmentally safe criteria of 0.1–0.4 ng/L by one to three orders of magnitude at all sites except the reference site. Low ecological screening values for four contaminants of emerging concern (CEC) in water were exceeded for one CEC in the reference site, two in WB and Las Vegas Bay and three in the most contaminated site LVW. Fish health biomarkers in WB carp had 25% lower liver glycogen, 10Xs higher testicular pigmented cell aggregates and higher sperm abnormalities than the reference site. Sperm from LVW fish also had significantly higher fragmentation of DNA, lower motility and testis had lower percent of spermatozoa, all of which can impair reproduction. Projections from a 3D water quality model performed for WB showed that EOC concentrations due to prolonged regional drought and reduced water levels could increase as high as 135%. Water temperatures by late 21st century are predicted to rise between 0.7 and 2.1 °C that could increase eutrophication, algal blooms, spread disease and decrease dissolved oxygen over 5%.

Study Area

Publication type Article
Publication Subtype Journal Article
Title Fish health altered by contaminants and low water temperatures compounded by prolonged regional drought in the Lower Colorado River Basin, USA
Series title Toxics
DOI 10.3390/toxics12100708
Volume 12
Issue 10
Year Published 2024
Language English
Publisher MDPI
Contributing office(s) Wetland and Aquatic Research Center
Description 708, 29 p.
Country United States
State Arizona, Nevada
Other Geospatial Lake Mead National Recreation Area, Lower Colorado River basin
Google Analytic Metrics Metrics page
Additional publication details