Discerning sediment provenance in the Outer Banks (USA) through detrital zircon geochronology

Marine Geology
By: , and 

Links

Abstract

Detrital zircon data from modern barrier island and estuarine environments in the Outer Banks (Atlantic Coast, USA) were statistically compared to sands from nearby rivers to assist in determining source-to-sink pathways. Fluvial samples, collected from near the Fall Line contact between the Appalachian Orogen and sediments of the coastal plain, all have age unique distributions, making them ideal for tracing provenance. Three samples from the Atlantic foreshore showed high similarities to one another, as well as to three samples from the estuarine (back-barrier) Pamlico and Albemarle Sounds. Mixture modeling with multiple data reduction methods and three different statistical tests for similarity consistently indicated that the nearby Potomac River was the primary source for all Atlantic foreshore and estuarine zircons, followed by minor contributions from the James River in some models. The models indicate little or no sediment contribution from the Susquehanna, Roanoke, Tar, Neuse, Cape Fear, and Peedee Rivers. Both Atlantic foreshore and estuarine sands are therefore interpreted to have initially originated from Appalachian bedrock to the north of their present-day location, and subsequently to have been transported southward through the Chesapeake Bay watershed before deposition in Virginia and North Carolina. Prior to barrier island formation in the last several thousand years, differing geomorphology of the Chesapeake Bay facilitated southward movement of sediments from its constituent rivers via longshore drift, where they were deposited in coastal settings on the mainland. The modern barrier islands, formed during the most recent post-glacial transgression, may be reworked from these deposits, but may also include a contribution from sediments that were derived more recently from relict deposits on the shelf. Oceanographic and sedimentological evidence suggests that movement of sand-sized grains from southern rivers across the back-barrier sounds is unlikely. These findings can assist with coastal resilience planning and resource management in a region under severe threat from climate change and rising sea levels.

Study Area

Publication type Article
Publication Subtype Journal Article
Title Discerning sediment provenance in the Outer Banks (USA) through detrital zircon geochronology
Series title Marine Geology
DOI 10.1016/j.margeo.2024.107409
Volume 477
Year Published 2024
Language English
Publisher Elsevier
Contributing office(s) Eastern Energy Resources Science Center, Geology, Energy & Minerals Science Center
Description 107409, 16 p.
Country United States
State North Carolina, Virgina
Google Analytic Metrics Metrics page
Additional publication details