Nitrogen deposition weakens soil carbon control of nitrogen dynamics across the contiguous United States

Global Change Biology
By: , and 

Links

Abstract

Anthropogenic nitrogen (N) deposition is unequally distributed across space and time, with inputs to terrestrial ecosystems impacted by industry regulations and variations in human activity. Soil carbon (C) content normally controls the fraction of mineralized N that is nitrified (ƒnitrified), affecting N bioavailability for plants and microbes. However, it is unknown whether N deposition has modified the relationships among soil C, net N mineralization, and net nitrification. To test whether N deposition alters the relationship between soil C and net N transformations, we collected soils from coniferous and deciduous forests, grasslands, and residential yards in 14 regions across the contiguous United States that vary in N deposition rates. We quantified rates of net nitrification and N mineralization, soil chemistry (soil C, N, and pH), and microbial biomass and function (as beta-glucosidase (BG) and N-acetylglucosaminidase (NAG) activity) across these regions. Following expectations, soil C was a driver of ƒnitrified across regions, whereby increasing soil C resulted in a decline in net nitrification and ƒnitrified. The ƒnitrified value increased with lower microbial enzymatic investment in N acquisition (increasing BG:NAG ratio) and lower active microbial biomass, providing some evidence that heterotrophic microbial N demand controls the ammonium pool for nitrifiers. However, higher total N deposition increased ƒnitrified, including for high soil C sites predicted to have low ƒnitrified, which decreased the role of soil C as a predictor of ƒnitrified. Notably, the drop in contemporary atmospheric N deposition rates during the 2020 COVID-19 pandemic did not weaken the effect of N deposition on relationships between soil C and ƒnitrified. Our results suggest that N deposition can disrupt the relationship between soil C and net N transformations, with this change potentially explained by weaker microbial competition for N. Therefore, past N inputs and soil C should be used together to predict N dynamics across terrestrial ecosystems.

Study Area

Publication type Article
Publication Subtype Journal Article
Title Nitrogen deposition weakens soil carbon control of nitrogen dynamics across the contiguous United States
Series title Global Change Biology
DOI 10.1111/gcb.70016
Volume 30
Issue 12
Year Published 2024
Language English
Publisher Wiley
Contributing office(s) Forest and Rangeland Ecosystem Science Center
Description e70016, 20 p.
Country United States
Other Geospatial contiguous United States
Google Analytic Metrics Metrics page
Additional publication details